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TEXT DEPENDENT SPEAKER
RECOGNITION WITH LONG-TERM
FEATURE BASED ON FUNCTIONAL DATA
ANALYSIS

PRIORITY CLAIM

This application is a nonprovisional of and claims the
priority benefit of commonly owned, co-pending U.S. Provi-
sional Patent Application No. 61/621,810, to Zhang et al, filed
Apr. 9, 2012, and entitled “TEXT DEPENDENT SPEAKER
RECOGNITION WITH LONG-TERM FEATURE BASED
ON FUNCTIONAL DATA ANALYSIS” the entire disclo-
sures of which are incorporated herein by reference.

FIELD OF THE INVENTION

Embodiments of the present invention are related to speech
technology, and more specifically to a text-dependent speaker
recognition method and system based on Functional Data
Analysis and Mel-Frequency Cepstral Coefficient features.

BACKGROUND OF THE INVENTION

In recent years, there has been an increasing interest in the
field of speaker recognition. Speaker recognition is a process
of automatically recognizing who is speaking by character-
istics ofan individual’s voice, also called voice recognition. It
has been developed for use in consumer electronic devices,
such as mobile telephones, games platforms, personal com-
puters and personal digital assistants. There are two major
applications of speaker recognition technologies. Speaker
verification involves determining whether a given voice
belongs to a certain speaker. It is usually used to control
access to restricted services, for example, access to computer
networks, websites, online or telephone banking systems,
online purchasing or voice mail, and access to secure equip-
ment. Speaker identification involves matching a given voice
to one of a set of known voices. No matter for which appli-
cation, the goal of a speaker recognition system is to extract,
characterize and recognize the information in the speech sig-
nal conveying speaker identity.

Speaker recognition technologies may be divided into two
categories, text-dependent speaker recognition (TDSR) and
text-independent speaker recognition (TISR). TDSR requires
the speakers to provide utterances of the same text for both
training and testing.

This text, known as “pass phrase,” can be a piece of infor-
mation such as a name, birth city, favorite color or a sequence
of number. TISR recognizes a speaker without requiring a
specific pass phrase. TDSR systems generally provide better
recognition performance than TISR systems, especially for
short training and testing utterances.

A TDSR system typically includes a computer or other
electronic device equipped with a source of sound input, such
as a microphone, to collect and interpret human speech. The
collected speech waveform is converted into digital data rep-
resenting signals at the discrete time intervals. The digitized
speech data is processed to extract voice features that convey
speaker information. For example, information about the
speaker’s vocal tract shape via the resonances and glottal
source via the pitch harmonic may be included in the speech
spectrum. The voice features are usually in a form of a
sequence of acoustic vectors. In training sessions, the voice
features extracted from the speech signal are used to create a
model or template stored in a database. In testing sessions, the
extracted features from the utterance are then compared to the
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reference features in the database that are obtained from the
previous training sessions to find an optimal match for the
given features. As an example, dynamic time warping (DTW)
is one of the common modeling techniques to align and mea-
sure the similarity between the test phrase and the templates
in the database.

Mel-Frequency Cepstral Coefficient (MFCC) is one of the
known methods for extraction of the best parametric repre-
sentation of acoustic signals. It offers a compact representa-
tion of the speech spectral envelops or the impact of the vocal
tract shape in rendering a particular sound. It however only
captures a highly local portion of the significant temporal
dynamics and thus cannot reflect some overall statistical char-
acteristics hidden behind the sentence.

Some researches and developments have been focused on
Functional Data Analysis (FDA). FDA is about analysis of
information on curves or surfaces, or anything else varying
over a continuum. It provides both visual and quantitative
results. In recent years, it has been proved that FDA shows
good performance on the speech feature analysis and pitch
re-synthesis.

It is within this context that embodiments of the present
invention arise.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention can be readily
understood by referring to the following detailed description
in conjunction with the accompanying drawings.

FIG. 1 is a flow diagram illustrating a text-dependent
speaker recognition method according to an embodiment of
the present invention.

FIG. 2 is a block diagram illustrating a text-dependent
speaker recognition system according to an embodiment of
the present invention.

FIG. 3 illustrates an example of a non-transitory computer-
readable storage medium with instructions for implementing
a text-dependent speaker recognition method according to an
embodiment of the present invention.

FIG. 4 shows values of the generalized cross-validation or
GCV criterion for choosing the smoothing parameters
according to an embodiment of the present invention.

FIG. 5 shows one of the simulation results from one dimen-
sion of MFCC features according to an embodiment of the
present invention.

DESCRIPTION OF THE SPECIFIC
EMBODIMENTS

Application of embodiments of the present invention
described herein to the particular case of recognition algo-
rithms, such as speech recognition, image recognition, or
pattern recognition can be seen from the flow diagram of
algorithm 100 of FIG. 1. Specifically, at 102, a time domain
signal 101 (e.g., an audio or video signal) may be analyzed to
extract N different test features x, . . . X,,, where n=N-1, and
N is one or more. The test features can be represented as
discrete data. By way of example and not by way of limita-
tion, the discrete data may be in the form of a vector having
components X, . . . X,,. These components may be spectral,
cepstral, or temporal features of a given observed speech
signal.

By way of example and without limitation of the embodi-
ments of the invention, the components X, . . . X, may be
cepstral coefficients of a speech signal. A cepstrum (pro-
nounced “kepstrum”) is the result of taking the Fourier trans-
form (FT) of the decibel spectrum as if it were a signal. The
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cepstrum of a time domain speech signal may be defined
verbally as the Fourier transform of the log (with unwrapped
phase) ofthe Fourier transform of the time domain signal. The
cepstrum of a time domain signal S(t) may be represented
mathematically as FT(log(FT(S(t))+j2rnq), where q is the
integer required to properly unwrap the angle or imaginary
part of the complex log function. Algorithmically: the cep-
strum may be generated by the sequence of operations:
signal—=FT—log—>phase unwrapping—FT—cepstrum.
There is a compext cepstrum and a real cepstrum. The real
cepstrum uses the logarithm function defined for real values,
while the complex cepstrum uses the complex logarithm
function defined for complex values also. The complex cep-
strum holds information about magnitude and phase of the
initial spectrum, allowing the reconstruction of the signal.
The real cepstrum only uses the information of the magnitude
of the spectrum. By way of example and without loss of
generality, the algorithm 100 may use the real cepstrum.

The cepstrum can be seen as information about rate of
change in the different spectrum bands. For speech recogni-
tion applications, the spectrum is usually first transformed
using the Mel Frequency bands. The result is called the Mel
Frequency Cepstral Coefficients or MFCCs. A frequency fin
hertz (cycles per second) may be converted a dimensionless
pitch m according to: m=1127.01048 log, (1+£/700). Simi-
larly a mel pitch can be converted to a frequency in hertz
using: f=700(e™127-0104_1),

In the case of speech recognition, certain patterns of com-
binations of features x, . . . X, may correspond to units of
speech (e.g., words) or sub-units, such as syllables, phonemes
or other sub-units of words. The features may also contain
information characteristic of the source of the signal, e.g.,
characteristic of the speaker in the case of speech recognition.
In accordance with aspects of the present invention, the sys-
tem may represent the discrete data for each of the test fea-
tures by a corresponding fitting function, as indicated at 104.
Each fitting function may be defined in terms of a finite
number of continuous basis functions and a corresponding
finite number of expansion coefficients. The fitting functions
may be compressed through Functional Principal Component
Analysis (FPCA) to generate corresponding sets of principal
components of the fitting functions for each test feature, as
indicated at 106. Each principal component for a given test
feature is uncorrelated to each other principal component for
the given test feature. The system may then calculate a dis-
tance between a set of principal components for the given test
feature and a set of principal components for one or more
training features, as indicated at 108. The test feature may
then be classified according to the distance calculated, as
indicated at 110. A state of the system may then be adjusted
according to a classification of the test feature determined
from the distance calculated, as indicated at 112.

The Basis Functions

As mentioned above in connection with 104 of FIG. 1, a
fitting function may be defined in terms of a finite number of
continuous basis functions and a corresponding finite number
of'expansion coefficients. By way of example and not by way
of limitation, the fitting function x,(t) representing the data
may be defined in terms of a basis function expansion, which
may be expressed in mathematical notation as in equation (2)
below.
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0= ) cud () =cig

K
k=1

In equation (2) the functions ¢..k=1, . . . K are a set basis
functions and the parameters c;;, €, . . . , C; are coefficients
of the expansion. By way of example, and not by way of
limitation, the basis functions may be Fourier basis functions
that simulate the MFCC features. The Fourier basis functions
may be defined as: ¢,(t)=1, ¢,,_, (t)=sin rmt, ¢,,(t)=cos rmt.
These basis functions may be uniquely determined through
defining the number of the basis function K and the period w.

The Solution to the Calculation of the Expansion Coeffi-
cients

After the basis functions are decided, the x,(t) may be
defined by the coefficients c,, c,, . . . , C;z The data fitting
level may be determined the sum of squared errors (SSE) or
residual between the discrete data for a feature and a corre-
sponding fitting function. The SSE or residual may be defined
as in equation (3) below.

n

K
SSE(yi | e) = E [yij -
=

1

2 3)
Cit P ([j)}

By way of example and not by way of limitation, the classic
least square method shown in Eq (3) above may be used to
solve this minimization problem.

Roughness Penalty Method

When the number of the basis function K is too big or too
small, it may result in overfitting or underfitting problems for
the least square method. A roughness penalty method may be
applied to improve the functional fitting problem. The rough-
ness penalty method solves the fitting issue based on the
closeness of the fit and existence of the overfitting, i.e., to
make sure there is no dramatic changes in a local range.

Solving the fitting issues based on the closeness of the fit
may be settled well by minimizing the squared errors. On the
other hand, the integration of square of the second derivate
may measure the existence of the overfitting, which may be
expressed as:

PEN, (x)=f{D%x(s) }2ds=|D?x{? 4

Since these two goals are opposite, the middle ground of
SSE and PEN, should be taken. Finally, the criterion can be
built as:

PENSSE, = Z {y: = X)) + A PEN, (x) )

J

Where A is a smoothing parameter to control the level
between SSE and PEN. When A is small, the estimation will
be toward to SSE. When the smoothing parameter A becomes
bigger, the estimation there will be a higher roughness penalty
and the curve will be smoother.

Choosing of Smoothing Parameter A

Using the Roughness Penalty method may come up with a
new issue with respect to the selection of the number of basis
function K and the smoothing parameter A. In one example,
the Generalized Cross-Validation measure GCV may locate a
best value for these parameters to define the basis function
and the residual criterion. Details of discussions on General-
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ized Cross-Validation may be found in M. Gubian, F.
Cangemi and L. Boves, “Automatic and Data Driven Pitch
Contour Manipulation with Functional Data Analysis,”
Speech Prosody, 2010, Chicago, and fully incorporated
herein by reference for all purposes. Generally, the smaller
the GCV value is, the better the fitting will be. The definition
of the GCV values may be express as:

©

GCV(Q) = ( SSE )

n— Zf(/l) )(n —Q)

This GCV value may provide the direction on which value
of A and the basis number K may give a better fitting level.
Details of discussions on GCV values may be found in J. O.
Ramsay and B. W. Silverman, “Applied Functional Data
Analysis—Method and Case Studies,” Springer, 2002, and
fully incorporated herein by reference for all purposes.

Functional Principal Component Analysis

As mentioned above in association with 106 of FIG. 1,
FPCA performs compression on the fitting functions. The
FPCA is based on the traditional Principal Component Analy-
sis (PCA). Traditional PCA uses a linear combination as in
equation (7) below:

P (@]
fi = Bixis + PaXip + o+ BpXip = Zﬁjxij
=

In equation (7) {f, is the i-th principal component for the
data. Each succeeding component in turn has the highest
variance possible under the constraint that it is uncorrelated
with the preceding components. In FPCA, the continuous
function x,(t),te[0,T] may be considered as one variable as in
equation (8) below:

Fio Bl mi(s)ds=[px; ®)

In equation (8), the function p(s) corresponds to the linear
weighting coefficients (B,, B, . - . , B,), and ', is the i-th
functional principal component for the functional data x,(t).

The problem of finding the principle components f;' may be
abstractly expressed as set forth in equation (9) below.

)

max Var(f') = %EN] ( f px|
i=1

st f [Bs)Pds = IIAIP = 1

Equation (9) explains how to calculate the weighting func-
tion f3(s) that is used to obtain the principal components £’ in
FCPA. More specifically, equation (9) describes a criterion
which is needed to be optimized for the purpose of determin-
ing the best weight function f(s). The first equation of (9) is an
optimization target and the second one is a constraint condi-
tion.

The principal components f! contain compressed data
information in the fitting functions x,(t) for the test features
from the original function data. Thus, by compressing the
fitting functions x,(t) using FCPA one may generate corre-
sponding sets of principal components f;' for each test feature.

Distance Measures

As mentioned above in associated with 108 of FIG. 1, the
distance between two sets of principal components may be
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6

calculated to classify the test features in the input signal. By
way of example and not by way of limitation, one of the
common methods to calculate and measure the distance is
Minkowski Distance (d,,,,) as shown below and its cosine
similarity (d_,,) may be used in the classification phase. The
distances d,;,, and d_,; are used separately in the experi-
ments of experiments below.

n
Antine = Pl X X1 — x2ul?
=

n

10

X1k X2k
doos =

It should be noted that other distance measures or similar-
ity measurements may be applied. Details of discussions on
distance measures may be found in M. Gubian, F. Cangemi
and L. Boves, “Joint analysis of FO and speech rate with
functional data analysis,” ICASSP 201, Prague, and fully
incorporated herein by reference for all purposes.

Other distance measures that can be used include, but are
not limited to:

The Manhattan Distance:

~ n
Autan = 1 X ¥ —xul* = Z oy — xax
k=1 k=1

The Chebyshev Distance:

n
depe = lim Pl 3] |xig — 2 [P = max (lxy — x))
Py k=1 k

It can be found that the Minkowski Distance (p) is a gen-
eralization of the Chebyshev Distance (p=1) and the Manhat-
tan Distance (p—>).

Application to Speech Recognition

As noted above in connection with 110 and 112 of FIG. 1,
a computer system may use the determined classification of
the test feature to trigger a change in state of the system. One
example, among others of a change in state is related to use of
aspects of the present disclosure in conjunction with speech
recognition implemented on a computer system. In such a
case, the input signal may be a digitized voice signal. The test
features may be extracted from test signals for particular users
speak particular words, phrases, sentences or other utter-
ances. By way of example and not by way of limitation, the
system may be configured to analyze an input speech signal to
determine if the signal corresponds to a particular person
speaking a particular utterance. The system may be pro-
grammed to change state when the signal is classified as
corresponding to the particular user speaking the particular
utterance. Examples of changes in state include, but are not
limited to, turning the system on or off, turning one or more
components of the system on or off, starting, pausing, or
exiting a program, enabling or disabling entry of input to the
system through another device, such as a keyboard, mouse, or
game controller.
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Text Dependent Speaker Recognition System

Embodiments of the invention may be implemented on a
suitably configured computer apparatus. FIG. 2 illustrates a
block diagram of a computer apparatus that may be used to
implement a text-dependent speaker recognition method
based on FDA and MFCC according to an embodiment of the
present invention. The apparatus 200 generally may include a
processor module 201 and a memory 205. The processor
module 201 may include one or more processor cores.

The memory 205 may be in the form of an integrated
circuit, e.g., RAM, DRAM, ROM,; and the like. The memory
205 may also be a main memory that is accessible by all of the
processor modules. In some embodiments, the processor
module 201 may have local memories associated with each
core. A program 203 may be stored in the main memory 205
in the form of processor readable instructions that can be
executed on the processor modules. The program 203 may be
configured to perform text-dependent speaker recognition
methods as discussed above with respect to FIG. 1. The pro-
gram 203 may be written in any suitable processor readable
language, e.g., C, C++, JAVA, Assembly, MATLAB, FOR-
TRAN, and a number of other languages. Input data 207 may
also be stored in the memory. Such input data 207 may
include the discrete data for each test feature from 104 of FIG.
1, or the generated principal components of the fitting func-
tions for each test feature from 106 of FIG. 1. During execu-
tion of the program 203, portions of program code and/or data
may be loaded into the memory or the local stores of proces-
sor cores for parallel processing by multiple processor cores.

The apparatus 200 may also include well-known support
functions 209, such as input/output (1/0) elements 211, power
supplies (P/S) 213, a clock (CLK) 215, and a cache 217. The
apparatus 200 may optionally include a mass storage device
219 such as a disk drive, CD-ROM drive, tape drive, or the
like to store programs and/or data. The device 200 may
optionally include a display unit 221, audio speakers unit 222,
and user interface unit 225 to facilitate interaction between
the apparatus and a user. The display unit 221 may be in the
form of a cathode ray tube (CRT) or flat panel screen that
displays text, numerals, graphical symbols or images. The
user interface 225 may include a keyboard, mouse, joystick,
light pen, or other device that may be used in conjunction with
a graphical user interface (GUI). The apparatus 200 may also
include a network interface 223 to enable the device to com-
municate with other devices over a network, such as the
internet.

In some embodiments, the system 200 may include an
optional microphone 229, which may be a single microphone
ora microphone array. The microphone 229 can be coupled to
the processor 201 via the /O elements 211. By way of
example, and not by way of limitation, the input human
utterances may be recorded using the microphone 229.

The components of the system 200, including the processor
201, memory 205, support functions 209, mass storage device
219, user interface 225, network interface 223, and display
221 may be operably connected to each other via one or more
data buses 227. These components may be implemented in
hardware, software or firmware or some combination of two
or more of these.

Non-Transitory Computer-Readable Storage Medium

According to another embodiment, instructions for text-
dependent speaker recognition based on FDA and MFCC
features may be stored in a computer readable storage
medium. By way of example, and not by way of limitation,
FIG. 3 illustrates an example of a non-transitory computer
readable storage medium 300 in accordance with an embodi-
ment of the present invention. The storage medium 300 con-
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tains computer-readable instructions stored in a format that
can be retrieved, interpreted, and executed by a computer
processing device. By way of example, and not by way of
limitation, the computer-readable storage medium 300 may
be a computer-readable memory, such as random access
memory (RAM) or read only memory (ROM), a computer
readable storage disk for a fixed disk drive (e.g., a hard disk
drive), or a removable disk drive. In addition, the computer-
readable storage medium 300 may be a flash memory device,
a computer-readable tape, a CD-ROM, a DVD-ROM, a Blu-
Ray, HD-DVD, UMD, or other optical storage medium.

The storage medium 300 contains text-dependent speaker
recognition instructions 301 configured for text-dependent
speaker recognition based on FDA and MFCC features in
accordance with the method described above with respect to
FIG. 1. In particular, the instructions 301 may include extract-
ing discrete test feature data instructions 303 that are used to
extract discrete test feature data from time domain signals.
The input human utterance may be obtained in computer-
readable form from a recording or from sounds captured live
atrun time by a microphone or microphone array. The instruc-
tions 301 may further include representing discrete data for
each test feature by corresponding fitting functions instruc-
tions 305 that represent discrete data by fitting functions.

The instructions 301 may also include compressing fitting
function through FPCA instructions 307 that compress the
fitting functions through FPCA to generate corresponding
sets of principal components of the fitting functions for each
test feature. Then the calculation instructions 309 calculate
distance between principal components for test features and
training features. The classification instructions 311 in turn
classify test features based on the calculation. The state
change instructions 313 may adjust a state of the system
according to the classification.

Experiments and Results

A number of experiments were performed to test text-
dependent speaker recognition based on FDA and MFCC
features in accordance with an embodiment of the present
invention against prior art speaker recognition techniques. In
the experiments, there were five different speakers. Each
speaker uttered about 240 different short words and each
word was repeated three times. Every utterance was recorded
for training purposes and all three recordings for the same
word were used for verification. The length of each utterance
was about 2 seconds in average, and every word was sampled
at 16 kHz sampling rate with 16-bit width. The verification
was passed only when the same speaker uttered the same
word.

The 16-dimensional MFCC features were extracted from
the utterances with 30 triangular mel filters used in the MFCC
calculation. For each frame, the MFCC coefficients and their
first derivative formed a 32-dimensional feature vector. The
Fourier basis functions were chosen to smooth the MFCC
features. FIG. 4 shows the GCV values in connection with
selection of smoothing parameters. According to the GCV
values, the functional parameters were chosen as followed.
The number of basis functions K was 17 and the smoothing
parameter 2 is 10e-4. By defining the functional parameters,
the roughness penalty criterion was used to calculate the
coefficient set ¢;;, €5, . . ., C;x FIG. 5 shows one of the
simulation results from one dimension of MFCC features.

The simulation results were compared to similar results for
a Dynamic Time Warping system with MFCC features. This
system is provided as an example of a classic technique for
text-dependent speaker recognition. TABLE I shows the per-
formances of the prior art system and an experiment that used
the FDA coefficients as the features without FPCA compres-
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sion and used traditional Euclidean Distance as the distance
measure. The Equal Error Rate (EER) was used to evaluate

the system performance.

TABLE I
Method EER
MFCC-DTW 6.13%
MFCC-FDA 9.54%

From TABLE I, the performance of a system using the
FDA coefficients without FPCA compression was not as
good as the performance of the classic MFCC-DTW system.
It may be resulting from some redundant information con-
tained in the coefficients.

From the 240 words uttered by each speaker, the first fifty
words (i.e., words 1-50) and words 100-150 were separately
selected to run experiments for the purpose of testing the
stability of FPCA. TABLE II and TABLE III show these
results below, and where nharm represents the number of
harmonics or principal components to compute.

TABLE II
for word 1-50
Method EER (%)
MFCC-DTW 7.43%
MFCC-FPCA (nharm)
1 3 5 7 9
EER (%) 12.28 8.10 7.83 7.53 7.29
TABLE III
word 100-150
Method EER (%)
MFCC-DTW 6.02
MFCC-FPCA (nharm)
1 3 5 7 9
EER (%) 11.80 7.95 7.31 6.15 6.01

From TABLE II and TABLE III, the MFCC-FPCA system
showed improvements on the equal error rate over the system
without FPCA compression above in connection with
TABLE 1. The MFCC-FPCA system effectively reduced the
redundant information, and the MFCC-FPCA system with
Euclidean Distance as distance measure achieved an equiva-
lent performance as the classic MFCC-DTW TDSR system.

At last, experiments on a MFCC-FPCA system with dif-
ferent similarity measurements were preformed. The words
100-150 were chosen for the experiments. The number of
harmonics or principal components to compute (nharm) was
5. TABLE IV shows the results.

TABLE IV
Similarity Euclidean Manhattan ~ Chebyshev Cosine
Measurement Distance Distance Distance Similarity
EER (%) 7.31 7.06 9.62 2.49
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10
As shown in TABLE 1V, a MFCC-FPCA system with
cosine similarity as the distance measure had the best perfor-
mance result.
While the above is a complete description of the preferred
embodiment of the present invention, it is possible to use
various alternatives, modifications, and equivalents. There-
fore, the scope of the present invention should be determined
not with reference to the above description, but should,
instead, be determined with reference to the appended claims,
along with their full scope of equivalents. Any feature
described herein, whether preferred or not, may be combined
with any other feature described herein, whether preferred or
not. In the claims that follow, the indefinite article “A” or “An”
refers to a quantity of one or more of the item following the
article, except where expressly stated otherwise. In the claims
that follow, the word “or” is to be interpreted as a non-
exclusive or, unless otherwise specified. The appended claims
are not to be interpreted as including means-plus-function
limitations, unless such a limitation is explicitly received in a
given claim using the phrase “means for”.
What is claimed is:
1. A method, comprising:
extracting one or more test features from a time domain
signal, wherein the one or more test features are repre-
sented by discrete data with a processing system;

representing the discrete data for each of the one or more
test features by a corresponding one or more fitting
functions with the processing system, wherein each fit-
ting function is defined in terms of a finite number of
continuous basis functions and a corresponding finite
number of expansion coefficients;

compressing the fitting functions through Functional Prin-

cipal Component Analysis (FPCA) with the processing
system to generate corresponding sets of principal com-
ponents of the fitting functions for each test feature,
wherein each principal component for a given test fea-
ture is uncorrelated to each other principal component
for the given test feature;

calculating a distance between a set of principal compo-

nents for the given test feature and a set of principal
components for one or more training features with the
processing system;

classifying the test feature according to the distance calcu-

lated with the processing system; and

adjusting a state of the processing system according to a

classification of the test feature determined from the
distance calculated.

2. The method of claim 1, wherein the time domain signal
is a time domain speech signal.

3. The method of claim 2, wherein the one or more test
features include one or more mel-frequency cepstral coeffi-
cient (MFCC) features.

4. The method of claim 1, wherein the time domain signal
is a time domain speech signal and wherein classifying the
test feature according to the distance calculated includes
determining whether the time domain signal corresponds to a
particular individual speaking a particular utterance.

5. The method of claim 1, wherein the each principal com-
ponent is an integral of a product of a corresponding one of the
one or more fitting functions with a weighting function.

6. The method of claim 1, wherein representing the discrete
data for each of the one or more test features by a correspond-
ing one or more fitting functions includes minimizing a sum
of square errors between the discrete data for a feature and a
corresponding fitting function.

7. The method of claim 1, wherein representing the discrete
data for each of the one or more test features by a correspond-
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ing one or more fitting functions includes minimizing a quan-
tity that includes a sum of square errors between the discrete
data for a feature and a corresponding fitting function and an
integral of the second derivative of the corresponding fitting
function multiplied by a smoothing parameter.
8. The method of claim 1, wherein the one or more basis
functions are Fourier basis functions.
9. A non-transitory computer readable medium having
computer-executable instructions embodied therein, the
instructions being configured to implement a method upon
execution, the method comprising:
extracting one or more test features from a time domain
signal, wherein the one or more test features are repre-
sented by discrete data with a processing system;

representing the discrete data for each of the one or more
test features by a corresponding one or more fitting
functions with the processing system, wherein each fit-
ting function is defined in terms of a finite number of
continuous basis functions and a corresponding finite
number of expansion coefficients;

compressing the fitting functions through Functional Prin-

cipal Component Analysis (FPCA) with the processing
system to generate corresponding sets of principal com-
ponents of the fitting functions for each test feature,
wherein each principal component for a given test fea-
ture is uncorrelated to each other principal component
for the given test feature;

calculating a distance between a set of principal compo-

nents for the given test feature and a set of principal
components for one or more training features with the
processing system;

classifying the test feature according to the distance calcu-

lated with the processing system;

adjusting a state of the processing system according to a

classification of the test feature determined from the
distance calculated.

10. A system comprising:

a processor;

amemory;
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a set of processor-executable instructions embodied in the
memory, the instructions being configured to implement
a method upon execution, the method comprising:

extracting one or more test features from a time domain
signal, wherein the one or more test features are repre-
sented by discrete data with a processing system;

representing the discrete data for each of the one or more
test features by a corresponding one or more fitting
functions with the processing system, wherein each fit-
ting function is defined in terms of a finite number of
continuous basis functions and a corresponding finite
number of expansion coefficients;

compressing the fitting functions through Functional Prin-

cipal Component Analysis (FPCA) with the processing
system to generate corresponding sets of principal com-
ponents of the fitting functions for each test feature,
wherein each principal component for a given test fea-
ture is uncorrelated to each other principal component
for the given test feature;

calculating a distance between a set of principal compo-

nents for the given test feature and a set of principal
components for one or more training features with the
processing system;

classifying the test feature according to the distance calcu-

lated with the processing system;

adjusting a state of the processing system according to a

classification of the test feature determined from the
distance calculated.

11. The system of claim 10, wherein the time domain signal
is a time domain speech signal.

12. The system of claim 11, wherein the one or more test
features include one or more mel-frequency cepstral coeffi-
cient (MFCC) features.

13.The system of claim 10, wherein the time domain signal
is a time domain speech signal and wherein classifying the
test feature according to the distance calculated includes
determining whether the time domain signal corresponds to a
particular individual speaking a particular utterance.

#* #* #* #* #*



